キャラクタリスティクス法 Method of Characteristics (MOC)

山本章夫

名古屋大学

- 序論
- MOCの基礎
- レイトレースと境界条件
- 角度離散化(方位角/極角)
- 幾何形状の表現
- 加速計算
- 適用例
- まとめ

実機の炉心計算手法

- 燃料セル計算:一次元円筒体系
- 集合体計算:非均質形状を考慮した二次元計算
- 炉心計算:均質化した集合体を用いた三次元計算

Reactor Physics, Nagoya University, Akio YAMAMOTO https://www2.nsr.go.jp/data/000307505.pdf

MOX燃料、可燃性毒物を多量に使った高燃焼度 燃料など、非均質性の高い燃料設計に対応する ため、信頼性の高い核特性解析手法が必要

・先進的な軽水炉燃料の設計を行うためにも、汎用的な幾何形状を扱う計算手法が必要

6

衝突確率法の活用は?

衝突確率法は、複雑な幾何形状を取り扱い可能
 衝突確率法では不十分なのか?

衝突確率法の問題点

- 衝突確率法は全ての領域間の衝突確率が必要
- 集合体レベル~炉心レベルの幾何形状に対し、 衝突確率法を適用することは、計算時間上非現 実的
- そのため、MOCが必要となる。

- 中性子は特定のエネルギーおよび直線の飛行経路を飛行するグループに分けられる。
- 飛行経路に沿った中性子の生成と消滅が計算される。
- 特定の飛行経路に沿った中性子束が角度中性子束に対応する。

MOCの 簡単な 歴史

- 1950年代に開発された。主要な適用先は遮蔽解析。
- 1970年代に燃料セル解析への適用
- 1980年代を通じ、MOCはマイナーな輸送計算法であった。 衝突確率法、Sn法などが使用されていた。その理由は、 計算機能力が低かったことによる。
- 1990年代に入り計算機能力が向上したことにより、脚光 を浴び始める。
- 現時点では、集合体計算における主流の輸送計算法として使用されている。

■ ボルツマン方程式の微積分形 $\vec{\Omega} \cdot \nabla \phi(\vec{r}, E, \vec{\Omega}) + \Sigma_t(\vec{r}, E) \phi(\vec{r}, E, \vec{\Omega}) = Q(\vec{r}, E, \vec{\Omega})$

where,

- \vec{r} :position,
- E :energy,
- $\vec{\Omega}$:direction vector,
- $\phi(\vec{r}, E, \vec{\Omega})$: angular flux,
- $\Sigma_t(\vec{r}, E)$:macroscopic total cross sections,
- $Q(\vec{r}, E, \vec{\Omega})$:neutron source.

MOCの理論式

$$Q(\vec{r}, E, \vec{\Omega}) = \int_{4\pi} \int_{0}^{\infty} \Sigma_{s}(\vec{r}, E' \to E, \vec{\Omega}' \to \vec{\Omega}) \phi(\vec{r}, E', \vec{\Omega}') dE' d\vec{\Omega}'$$

$$+ \frac{\chi(E)}{4\pi} \int_{4\pi} \int_{0}^{\infty} V \Sigma_{f}(\vec{r}, E') \phi(\vec{r}, E', \vec{\Omega}') dE' d\vec{\Omega}'$$

$$+ S(\vec{r}, E, \vec{\Omega})$$

 $\Sigma_s(\vec{r}, E' \to E, \vec{\Omega}' \to \vec{\Omega})$: scattering cross section $\chi(E)$: fission spectrum $v\Sigma_f(\vec{r}, E')$: production cross section $S(\vec{r}, E, \vec{\Omega})$: external neutron source

 ボルツマン方程式の微積分形を複雑幾何形状 に直接適用することは、微分項の存在のため困 難
 Ω·∇φ(r, E, Ω) + Σ_t(r, E)φ(r, E, Ω) = Q(r, E, Ω)
 このため、新しい座標系を導入する

新しい座標系(中性子の飛行経路「キャラクタリ スティクスライン」に沿った座標系)

where,

 $\overline{\Omega}$:neutron flight direction,

 \vec{r} :current position,

 \vec{r}_0 :origin.

微分項の取り扱い
$$\vec{\Omega} \bullet \nabla \phi(\vec{r}, E, \vec{\Omega}) = \frac{d\phi(\vec{r}, E, \vec{\Omega})}{ds}$$

 $\vec{\Omega} = (\sin\theta\cos\omega, \sin\theta\sin\omega, \cos\theta)$ $\nabla\phi = (\frac{\partial\phi}{\partial x}, \frac{\partial\phi}{\partial y}, \frac{\partial\phi}{\partial z})$ $x = x_0 + s\sin\theta\cos\omega$ $y = y_0 + s\sin\theta\sin\omega$ $z = z_0 + s\cos\theta$

MOCにおける 離散化

- エネルギー
 - 中性子エネルギーをグループ化、多群化
- 角度
 - 中性子の飛行方向Neutron flight direction
- 空間
 - 中性子の飛行経路
 - 領域内で断面積および中性子束分布を一定とする (平坦中性子束分布)

■ 領域ごとの離散化(平坦断面積、中性子束)

■ 特定の飛行経路上の平均角 度中性子束

$$\phi_{m,i} = \frac{1}{S_{m,i}} \int_0^{S_{m,i}} \phi_m(s) ds$$
$$= \frac{1}{S_{m,i} \sum_{t,i}} (\phi_{m,i}^{in} - \phi_{m,i}^{out} + Q_{m,i} S_{m,i})$$

 $s_{m,i}$:length of characteristics line in region i, $\phi_{m,i}$:The average of the angular flux in region i.

$S_{m,i} \Sigma_{t,i} \phi_{m,i} = \phi_{m,i}^{in} - \phi_{m,i}^{out} + Q_{m,i} S_{m,i}$

ー次元・一領域の場合

 入射角度中性子束を仮定 ϕ_m^{in} ■ 角度中性子束の空間分布(飛行経路上) $\phi_m(s) = \phi_m^{in} \exp(-\Sigma_t s) + \frac{Q_m}{\Sigma_t} (1 - \exp(-\Sigma_t s))$ ■ 平均中性子束 $\overline{\phi}_m = \frac{1}{S_m} \int_0^{S_m} \phi_m(s) ds$ $\phi_m(s)$ ϕ_m^{out} S_m $\phi_m^{in}=0$ $\phi_m^{in} - \phi_m^{out} + Q_m s_m$ $S_{m}\Sigma_{t}$

Reactor Physics, Nagoya University, Akio YAMAMOTO

ー次元・一領域の場合

Gauss-Legendre分点を用いた立体角の積分

ー次元・一領域の場合

■ 極角方向の角度分点(例:6分点)

■ 等角度分点

m	θ (degree)	$\theta(rad)$	sinθ	dθ	sinθdθ	sin0d0(normalized)
1	15	0.2618	0.2588	0.5236	0.1355	0.1340
2	45	0.7854	0.7071	0.5236	0.3702	0.3660
3	75	1.3090	0.9659	0.5236	0.5058	0.5000
4	105	1.8326	0.9659	0.5236	0.5058	0.5000
5	135	2.3562	0.7071	0.5236	0.3702	0.3660
6	165	2.8798	0.2588	0.5236	0.1355	0.1340

Gauss-Legendre分点

m	θ (degree)	$\theta(rad)$	ω
1	21.2	0.3696	0.1713
2	48.6	0.8484	0.3608
3	76.2	1.3299	0.4679
4	103.8	1.8117	0.4679
5	131.4	2.2932	0.3608
6	158.8	2.7720	0.1713
T T .		1.0000	

■ 境界条件を使って角度中性子束を更新

- 真空境界条件 *φ*ⁱⁿ_m = 0
- 周期境界条件 $\phi_m^{in} = \phi_m^{out}$
- 反射境界条件

$$\phi_m^{in} = \phi_{M-m+1}^{out}$$

M: number of polar angle divisions

等方散乱の場合

$$Q_{i,g} = \sum_{g'} \Sigma_{s,g' \to g,i} \phi_{i,g'} + \frac{\chi_g}{k_{eff}} \sum_{g'} v \Sigma_{f,g',i} \phi_{i,g'}$$

ある角度方向

$$Q_{m,i,g} = \frac{1}{4\pi} Q_{i,g}$$

ー次元・一領域の場合(計算手順)

計算手順

- (1) 入射角度中性子束を評価
- (2) 角度m方向の平均中性子束を評価
- (3) 平均全中性子束を評価
- (4) 自群散乱源を更新
- (5) (1)から(4)を複数回反復 (内部反復)
- (6) 核分裂源と他のエネルギー群からの散乱中性子源 を更新
- (7) (1)から(6)を収束するまで実施

ー次元・多領域への適用

ある領域の角度中性子束分布
 $\phi_{m,i}(s) = \phi_{m,i}^{in} \exp\left(-\Sigma_{t,i}s_{m,i}\right) + \frac{Q_{m,i}}{\Sigma_{t,i}} \left(1 - \exp\left(-\Sigma_{t,i}s_{m,i}\right)\right)$ 角度中性子束の連続性

ー次元・多領域への適用

- 極角分点の選択
 - 一領域の場合と同じ
- 各領域での平均角度中性子束を評価
 一領域の場合と同じ
- 各領域で平均全中性子束を評価
 - 一領域の場合と同じ

M: number of polar angle divisions

 $\pi - \theta$ θ ϕ_m^{in}

Reactor Physics, Nagova University, Akio YAMAMOTO

 ϕ_m^{out}

ー次元・多領域への適用

計算手順

- (1) 入射角度中性子束を評価
- (2) 各領域において、飛行方向mの平均角度中性子束 を評価
- (3) 各領域において、平均全中性子束を評価
- (4) 各領域において、自群散乱中性子源を更新
- (5)(1)から(4)を反復(内部反復)
- (6) 核分裂中性子源と他のエネルギー群からの散乱中 性子源を更新
- (7) (1)から(6)を収束まで反復

二次元への拡張角度の取り扱い 中性子の飛行方向は方位角と極角で表現される

- 一次元平板体系は極角方向のみ
- 方位角と極角を離散化

Reactor Physics, Nagoya University, Akio YAMAMOTO

二次元体系のレイトレース

二次元体系への適用

■ ライン k, 方向 m, 領域 iにおける角度中性子束

$$\phi_{m,k,i}(s) = \phi_{m,k,i}^{in} \exp\left(-\sum_{t,i} \frac{s_{m,k,i}}{\sin \theta_m}\right) + \frac{Q_{m,i}}{\sum_{t,i}} \left(1 - \exp\left(-\sum_{t,i} \frac{s_{m,k,i}}{\sin \theta_m}\right)\right)$$

Reactor Physics, Nagoya University, Akio YAMAMOTO

ライン k (飛行方向 m, 領域 i)における平均角
 度中性子束

$$\overline{\phi}_{m,k,i} = \frac{\sin \theta_m}{S_{m,k,i}} \int_0^{S_{m,k,i} / \sin \theta_m} \phi_{m,k,i}(s) ds$$

$$=\frac{\phi_{m,k,i}^{in}-\phi_{m,k,i}^{out}+Q_{m,i}\frac{S_m}{\sin\theta_m}}{\frac{S_m}{\sin\theta_m}\Sigma_{t,i}}$$

等方散乱を仮定した場合

$$Q_{i,g} = \sum_{g'} \Sigma_{s,g' \to g,i} \phi_{i,g'} + \frac{\chi_g}{k_{eff}} \sum_{g'} v \Sigma_{f,g',i} \phi_{i,g'}$$

■ ある角度方向に注目して

$$Q_{m,i,g} = \frac{1}{4\pi} Q_{i,g}$$

二次元体系への適用 反復方法

二次元体系 計算手順

(1) 境界の領域において、入射角度中性子束を評価

- (2) 各キャラクタリスティクスライン上で、各領域における流出角度中性 子束を評価
- (3) 各キャラクタリスティクスライン上で、各領域における平均角度中性 子束を評価
- (4) 各領域における平均角度中性子束を評価
- (5) 各領域における平均全中性子束を評価
- (6) 各領域における自群散乱中性子源を更新
- (7)(1)-(6)を複数回反復(内部反復)
- (8) 核分裂中性子源と他のエネルギー源からの散乱中性子源を更新 (外部反復)
- (9)(1)-(8)を収束するまで繰り返し

- レイトレース(飛行経路)に沿って中性子のバラン スが計算される
- レイトレースの引き方と密度が計算精度に影響
 を与える
- レイトレースの引き方は、境界条件の設定と密接
 に関連

Reactor Physics, Nagoya University, Akio YAMAMOTO

- 正確(レイトレース間の接続で近似なし)
- 反射、周期、回転境界条件のみに対応可能
- 正方形、長方形、三角形、六角形など、平面を同 一形状で埋め尽くすことが可能な形状のみ
- 方位角方向の設定は以下の制約を受ける $\varphi = \tan^{-1}\left(\frac{N_y \Delta y}{N_y \Delta x}\right)$

 N_x , N_y : arbitrary positive integer,

 $\Delta x, \Delta y$:size of rectangular cell in x and y direction. Reactor Physics, Nagoya University, Akio YAMAMOTO

幾何的な不連続性を考慮することが可能
 不等間隔のレイトレースにより精度向上可能

Equidistant

Conventional macroband

Gauss-Legendre macroband

0.05

0

0.1

0.15

Average ray separation(cm)

0.2

0.25

0.3

等間隔レイトレース+サイクリック・トラッキング

- 領域境界における角度中性子束の内挿誤差がない
- 離散化誤差が大きい

■ マクロバンド法

- 離散化誤差が小さい
- 領域境界における角度中性子束の内挿により精度が 悪化する

角度中性子束を内挿する(内挿誤差発生、内挿のための計算時間が必要)

■ 領域の形状及び方位角方向に制約条件なし

最も近いレイトレースの角度中性子束をそのまま 使用する(近似誤差大、計算時間小)

- ■領域端をセグメントに分割
- セグメントから流出する角度中性子束を平均
- 反射境界条件だけではなく、白色境界条件などを取り扱い可能

- 従来からSn法で使用されてきた
- MOCに使用可能であるが、レイトレースを効率的に行うことが出来ない(理由:分点毎にXY平面上のレイトレースが変わるため) †

- 全極角方向について、方位角方向の分割を同一 とする
- MOCでは一般的に用いられる角度分割(理由: 全ての方位角方向において、同一のレイトレース 情報を用いることが出来るため)

- 非均質燃料セルにおける角度中性子束の方位
 角方向の分布は非常に複雑
- 従って、方位角方向については、詳細な分割が 必要になる。一般的には、方位角方向(360°)を 32~128程度に分割する

方位角離散化: 非均質セルにおける角度中性子束

等極角分割

- 角度を等分割
- 単純であるが、強吸収体などが存在する 場合、多数の分割が必要
- 等極角重み分割

- 立体角の重み(sin θ、θはz軸からの角度)が同じになるよう分割
- 等極角分割より精度は良いが、多数の分割が必要
- Gauss-Legendre分点
 - 上記の等分割より遙かに精度は高い

分点数	$old sin oldsymbol{ heta}^{*)}$	W
1	0.81649658	1.0000000
2	0.50837413	0.34785485
	0.94043229	0.65214515
3	0.36124868	0.17132449
	0.75020140	0.36076157
	0.97111322	0.46791394

*) θはz+軸からの角度

■ Tabuchi-Yamamoto (TY)分点

A. Yamamoto, M. Tabuchi, *J. Nucl. Sci. Technol.*, **44**, 129 (2007). https://www.tandfonline.com/doi/pdf/10.1080/18811248.2007.9711266?needAccess=true

Leonard分点

極角分点の性能 (C5G7 benchmark problem)

- C5G7benchmark problem
- エネルギー群:7 groups
- レイトレース法: Macroband method
- レイトレース幅: ≤ 0.05 cm
- 方位角分割数(360°):64
- 参照解:GL16分点

Reactor Physics, Nagoya University, Akio YAMAMOTO

Vacuum

極角分点の性能 (C5G7 benchmark problem)

	Relative differences for N _{polar} = 2 (reference : GL16)			
	Mothod	k offoctivo	Pin-by-pin fission rate	
Method		K-enective	RMS	Maximum
Uniformly Distrib	outed UD	-0.330%	1.260%	4.469%
Gauss-Legendre	GL	-0.011%	0.163%	0.341%
Leonard Optimu	m LO	0.097%	0.431%	1.171%
Tabuchi Yamamo	oto TY	-0.004%	0.074%	0.143%

→ TY_OPT2は <u>GL4</u>と同等

Relativ	e differenc	es for N _{polar} = 3	3 (reference : GL	.16)
Mot	hod	k offoctivo	Pin-by-pin f	ission rate
	lou	K-EIIECLIVE	RMS	Maximum
Jniformly Distributed U	D	-0.160%	0.582%	2.141%
Gauss-Legendre G	L	-0.011%	0.082%	0.159%
_eonard Optimum L(C	0.022%	0.083%	0.230%
Tabuchi Yamamoto T	Y	-0.001%	0.003%	0.010%

幾何形状の表現

- MOCの特長の一つは、幾何形状表現の自由度
- 複雑な幾何形状を表し得る入力方法が必要
- 候補としては:
 - 組み合わせ幾何形状(Combinatorial geometry)
 - 表面幾何形状(Surface geometry)
 - Factorial geometry
 - R-function solid modeler

複雑な幾何形状を基礎的な幾何形状(primitive)の組み合わせとして表現

幾何形状: 組み合わせ幾何形状

- モンテカルロコードで一般的に使用されている。 MVP, KENOなど。
- Primitiveの例

Туре	Description
RPP	Rectangular parallelpiped
CYL	Cylinder
RCC	Cylinder in arbitrary direction
SPH	Sphere
BOX	Parallelpiped
WED	Wedge
ARB	Arbitrary polyhedron with 4, 5 or 6 faces

- 幾何形状を表面の組み合わせで表現
- モンテカルロコードのMCNPなどで使用
- 柔軟であるが、多くの入力を必要とする。
 - 例えば、直方体を表すのにPrimitiveなら1つ、surface なら6つ必要 +1&&+2

- 長方形、円、楕円、直線、二次曲線などの任意の組み合わせを使用可能
- Factorial geometry法は、複雑な幾何形状に対し組み合わせ幾何形状より使用しやすい
 - 組み合わせ幾何形状は、全ての領域を明示的に指定 する必要があるが、FG法では、領域を自動的に割り 振り可能

 Factorial geometryを用いたときに表現可能な幾 何形状の一例

Reactor Physics, Nagoya University, Akio YAMAMOTO

幾何形状: R-function solid modeler

- 3-Dの物体の内側/表面/外側を表すための一連の数式
- これを用いることで、複雑な幾何形状の領域を自動的に判定可能
- 一方、領域判定のための計算時間を要する
 現在のPCにとっては、大きな負荷にはならない

Reactor Physics, Nagoya University, Akio YAMAMOTO

	(
0000 00000	
0000000000	
	•••••••

BWR assembly

Seed blanket

加速計算:重要性

- MOCの収束特性は、Sn法と類似
- Sn法の収束は無限均質体系においては、散乱 比(Σs/Σt)と等しくなる
- 軽水炉の計算において、散乱比は1に近い。従って、収束は遅い
- 効果的な収束加速が不可欠

- Coarse Mesh Rebalance (CMR)
- 初期のSn輸送計算で使用されていた歴史的な 手法
- 各領域において、中性子バランスをとるためにリ バランスファクターを適用する
- 特徴
 - ■単純
 - 複雑な幾何形状に適用可能
 - 計算条件により収束しない場合が多い
 - 炉心解析など実用的な計算条件では非効率

各領域において、中性子のバランスをとるための リバランスファクターを適用。

▪ 適用手順

- 輸送計算を実施(transport sweepを1回~複数回実 施、未収束の状態)
- 輸送計算の結果から、以下の量を計算 $J_{k+1/2}^{+,l+1/2}, J_{k-1/2}^{+,l+1/2}, \sum_{i \in k} h_i \Sigma_{t,i} \phi_i^{l+1/2}, J_{k-1/2}^{-,l+1/2}, J_{k+1/2}^{-,l+1/2}, \sum_{i \in k} Q_i^l h_i$ これらは、以下の中性子バランス式を満たしていない。 (理由:輸送計算が収束していないため) $\left(J_{k+\frac{1}{2}}^{+,l+\frac{1}{2}} + J_{k-\frac{1}{2}}^{+,l+\frac{1}{2}} + \sum_{i \in k} h_i \Sigma_{t,i} \varphi_i^{l+\frac{1}{2}}\right) - J_{k-1/2}^{-,l+1/2} - J_{k+1/2}^{-,l+1/2} = \sum_{i \in k} Q_i^l h_i$

リバランスファクタを未知数として反復計算より求める *f_k*, *f_{k-1}, <i>f_{k+1}*

$$f_{k}\left(J_{k+\frac{1}{2}}^{+,l+\frac{1}{2}}+J_{k-\frac{1}{2}}^{+,l+\frac{1}{2}}+\sum_{i\in k}h_{i}\Sigma_{t,i}\varphi_{i}^{l+\frac{1}{2}}\right)-f_{k-1}J_{k-1/2}^{-,l+1/2}-f_{k+1}J_{k+1/2}^{-,l+1/2}=\sum_{i\in k}Q_{i}^{l}h_{i}$$
 求めたリバランスファクタにより、全中性子束を補正
$$\phi_{i}^{l+1}=f_{k}\phi_{i}^{l+1/2}, i\in k$$

リバランスファクターの反復計算は、輸送計算の反復 より遙かに高速。これにより、輸送計算が加速される。

一次元体系における粗メッシュリバランス法の効果

一次元体系における粗メッシュリバランス法の効果

$\sigma h^{1)}$	Free	CMR					
	iteration	$(p=1)^{2)}$					
0.05	62587	3)					
0.1	32214						
0.2	16762						
1	10473	27					
2	8588	21					
5	5263	14					

1) Optical thickness of a mesh

2) p indicates number of fine mesh(es) in a coarse mesh3) Diverged

$\sigma h^{1)}$	Free	CMR				
	iteration	$(p=4)^{2)}$				
0.05	62587	3)				
0.1	32214					
0.20	16762	109				
1.04	NA ⁴⁾	105				
2.08	NA	230				
4.17	NA	338				

1) Optical thickness of a mesh

2) p indicates number of fine mesh(es) in a coarse mesh

3) Diverged

4)Not available but can be roughly estimated from Table7.1.

- Sn輸送計算で用いられてきた手法
- 全中性子束に対する補正量は、低次の輸送方程式(例: 拡散近似)により計算される
- 補正量は、輸送計算における中性子源の更新量に基づき、拡散方程式などで計算される
- 特徴
 - 効率的
 - 計算条件により発散する場合あり
 - 幾何形状の取り扱いに制限あり(一般的に、長方形や正三角形 など、拡散計算が実施できる体系に限られる)

- 粗メッシュ差分加速(The coarse mesh finite difference, CMFD)は、近代ノード法の加速法として開発された
- 体系における中性子バランスは、「補正された」 有限差分の拡散方程式により計算される
- 特徴
 - 効率的
 - 条件により発散する場合あり。ただし、拡散係数を補 正することで、安定性を向上させることが可能
 - 合成加速法に比べて、幾何形状の制約は少ない

- 体系における中性子バランスは、「補正された」 有限差分の拡散方程式により計算される
- ●領域間の正味中性子流は、参照解を再現するように補正される

 $J_{k+1/2} = -D_{k+1/2}^{FD}(\phi_{k+1} - \phi_k) - D_{k+1/2}^{COR}(\phi_{k+1} + \phi_k)$

 $D_{k+1/2}^{PD} = 2D_k D_{k+1} / (D_k \Delta h_{k+1} + D_{k+1} \Delta h_k)$ CMFD計算により求まった全中性子束で輸送計 算の全中性子束を補正 $\phi_i^{l+1} = \phi_i^{l+1/2} \frac{h_k \phi_k}{\sum h_i \phi_i^{l+1/2}}$

▪ 適用方法

- 輸送計算を実施(未収束の状態)
- 輸送計算の結果より、以下の量を計算

 $J_{k-1/2}, \phi_{k-1}, \phi_{k}, D_{k-1/2}^{FD} = 2D_{k-1}D_{k}/(D_{k-1}\Delta h_{k} + D_{k}\Delta h_{k-1})$ $J_{k+1/2}, \phi_{k}, \phi_{k+1}, D_{k+1/2}^{FD} = 2D_{k}D_{k+1}/(D_{k}\Delta h_{k+1} + D_{k+1}\Delta h_{k})$

これらは、以下の中性子バランス式を満たしていない

$$J_{k+1/2} - J_{k-1/2} + \sum_{i \in k} h_i \Sigma_{t,i} \phi_i = \sum_{i \in k} Q_i h_i$$

• 補正因子を計算 $D_{k-1/2}^{COR} = -\frac{J_{k-1/2} + D_{k-1/2}^{FD}(\phi_k - \phi_{k-1})}{(\phi_k + \phi_{k-1})}$ $D_{k+1/2}^{COR} = -\frac{J_{k+1/2} + D_{k+1/2}^{FD}(\phi_{k+1} - \phi_k)}{(\phi_{k+1} + \phi_k)}$

■ 補正された有限差分を用いて、有限差分式を解く

$$J_{k-1/2} = -D_{k-1/2}^{FD}(\phi_k - \phi_{k-1}) - D_{k-1/2}^{COR}(\phi_k + \phi_{k-1})$$
$$J_{k+1/2} = -D_{k+1/2}^{FD}(\phi_{k+1} - \phi_k) - D_{k+1/2}^{COR}(\phi_{k+1} + \phi_k)$$

 求まった全中性子束により輸送計算の全中性子束に 補正を実施

$$\phi_i^{l+1} = \phi_i^{l+1/2} \frac{h_k \phi_k}{\sum_{i \in k} h_i \phi_i^{l+1/2}}$$

CMFD加速計算で用いる有限差分式の計算は、 MOC輸送計算の反復より遙かに早い。そのため、 特に大型体系において計算時間が大幅に短縮 できる

一次元体系におけるCMFD加速法の効果

一次元体系におけるCMFD加速法の効果

$\sigma h^{1)}$	Free	CMR	CMFD
	iteration	$(p=1)^{2)}$	$(p=1)^{2}$
0.05	62587	3)	16
0.1	32214		15
0.2	16762		15
1	10473	27	13
2	8588	21	84
5	5263	14	

1) Optical thickness of a mesh

2) p indicates number of fine mesh(es) in a coarse me3) Diverged

$\sigma h^{1)}$	Free	CMR	CMFD
	iteration	$(p=4)^{2)}$	$(p=1)^{2}$
0.05	62587	3)	16
0.1	32214		17
0.20	16762	109	22
1.04	NA ⁴⁾	105	
2.08	NA	230	
4.17	NA	338	

1) Optical thickness of a mesh

2) p indicates number of fine mesh(es) in a coarse mesh

3) Diverged

4)Not available but can be roughly estimated from Table7.3.

- Generalized coarse mesh rebalance (GCMR)法はCMR とCMFDを統一した加速計算法
- より高い数値安定性
- 非構造メッシュに対して直接適用可能

Reactor Physics, Nagoya University, Akio YAMAMOTO

GCMRでは、メッシュ平均とメッシュ表面中性子束の線形 結合で領域間の正味中性子流を表す

BWR/PWR燃料集合体への適用

		Value of α							
Assembly	Fuel type	0.5	0.75	1	2	4	8	2/(3Σh)	
		(CMR)						(CMFD)	
BWR	UO2	1)	48	22	17	18	19	17	
	MOX		37	20	15	16	17	15	
PWR	UO2	62	16	16	16	17	19	17	
	MOX	62	13	9	9	11	13	10	

1) Diverged

Reactor Physics, Nagoya University, Akio YAMAMOTO

PWR二次元全炉心非均質体系における実効増
 倍率の収束状況

Reactor Physics, Nagoya Universit

- Chebyshev加速
- Aitken加速
- Fundamental mode rebalancing
- 上記の手法は、CMR, CMFD, GCMRなどと組み 合わせて使用可能

- マルチ集合体体系
 - C5G7 benchmark calculation
- 炉心体系
 - 4 loop PWR

C5G7 benchmark problem

■ 計算条件

- レイトレース幅: 0.02cm以下、Gauss-Legendreマクロバンド法
- 方位角分割: 128 (for 2Pi)
- 極角分割: 3 (for Pi/2、TY-opt角度分点)
- メッシュ分割:物質境界に加え、燃料・反射体セル (1.26cmx1.26cm)を20x20メッシュに分割
- モンテカルロのヒストリー数:3億
- 結果のサマリ
 - 実効増倍率の差異:0.001%
 - 燃料棒毎核分裂率分布の平均自乗誤差:0.05%
 - 燃料棒毎核分裂率分布の最大誤差:0.25%

Inner UO2集合体

Reactor Physics,

	2.1975	2.2023	2.2114	2.2234	2.2278	2.2294	2.1846	2.1473	2.1194	2.0548	1.9985	1.9483	1.8550	1.7530	1.6316	1.4840	1.2811	-AEGIS (MOC)
	2.1982	2.2025	2.2120	2.2238	2.2279	2.2302	2.1856	2.1480	2.1197	2.0563	1.9995	1.9487	1.8555	1.7534	1.6325	1.4841	1.2814	-GMVP (Multi-aroup
	-0.03%	-0.01%	-0.03%	-0.02%	0.00%	-0.04%	-0.05%	-0.04%	-0.01%	-0.07%	-0.05%	-0.02%	-0.03%	-0.02%	-0.05%	-0.01%	-0.02%	-Difference
	2.2023	2.2138	2.2387	2.2750	2.3030	2.3717	2.2538	2.2130	2.2492	2.1185	2.0610	2.0726	1.9190	1.7953	1.6534	1.4924	1.2812	Difference
	2.2019	2.2141	2.2385	2.2755	2.3029	2.3728	2.2543	2.2140	2.2499	2.1192	2.0617	2.0735	1.9193	1.7955	1.6539	1.4929	1.2818	
	0.02%	-0.01%	0.01%	-0.02%	0.00%	-0.05%	-0.02%	-0.04%	-0.03%	-0.03%	-0.03%	-0.04%	-0.01%	-0.01%	-0.03%	-0.03%	-0.04%	
	2.2114	2.2387	2.3118	2.4428	2.4709		2.3828	2.3351		2.2366	2.1774		2.0604	1.9302	1.7115	1.5116	1.2852	
	2.2114	2.2402	2.3123	2.4437	2.4718		2.3836	2.3355		2.2373	2.1778		2.0610	1.9311	1.7120	1.5121	1.2860	
	0.00%	-0.06%	-0.02%	-0.04%	-0.04%		-0.03%	-0.02%		-0.03%	-0.02%		-0.03%	-0.05%	-0.03%	-0.03%	-0.06%	
	2.2234	2.2750	2.4428		2.4982	2.4557	2.2947	2.2449	2.2911	2.1492	2.0977	2.1444	2.0789		1.8129	1.5397	1.2927	
	2.2234	2.2760	2.4436		2.4993	2.4567	2.2951	2.2450	2.2911	2.1494	2.0978	2.1450	2.0797		1.8139	1.5401	1.2936	
	0.00%	-0.05%	-0.03%		-0.04%	-0.04%	-0.02%	0.00%	0.00%	-0.01%	-0.01%	-0.03%	-0.04%		-0.06%	-0.03%	-0.07%	
	2.2278	2.3030	2.4709	2.4982	2.4018	2.4273	2.2784	2.2312	2.2777	2.1365	2.0837	2.1213	2.0008	1.9729	1.8324	1.5613	1.2971	
	2.2277	2.3032	2.4718	2.4998	2.4031	2.4288	2.2784	2.2310	2.2777	2.1362	2.0838	2.1216	2.0013	1.9729	1.8327	1.5619	1.2982	
	0.00%	-0.01%	-0.03%	-0.06%	-0.06%	-0.06%	0.00%	0.01%	0.00%	0.01%	0.00%	-0.02%	-0.02%	0.00%	-0.02%	-0.04%	-0.09%	
	2.2294	2.3717		2.4557	2.4273		2.3474	2.3011		2.2052	2.1471		2.0263	1.9394		1.6127	1.3010	
	2.2296	2.3727		2.4569	2.4280		2.3481	2.3015		2.2056	2.1477		2.0268	1.9398		1.6130	1.3018	
	-0.01%	-0.04%		-0.05%	-0.03%		-0.03%	-0.02%		-0.02%	-0.03%		-0.02%	-0.02%		-0.02%	-0.06%	
	2.1846	2.2538	2.3828	2.2947	2.2784	2.3474	2.2174	2.1771	2.2250	2.0860	2.0307	2.0559	1.9033	1.8148	1.7682	1.5314	1.2761	
	2.1850	2.2539	2.3829	2.2946	2.2781	2.3480	2.2181	2.1766	2.2255	2.0856	2.0303	2.0565	1.9037	1.8152	1.7685	1.5318	1.2765	
	-0.02%	-0.01%	0.00%	0.01%	0.01%	-0.02%	-0.03%	0.02%	-0.02%	0.02%	1.0055	-0.03%	-0.02%	-0.02%	-0.02%	-0.02%	-0.03%	
	2.1473	2.2130	2.3351	2.2449	2.2312	2.3011	2.1771	2.1389	2.1857	2.0502	1.9955	2.0179	1.8007	1.7784	1.7359	1.5068	1.2574	
	2.1475	2.2137	2.3354	2.2452	2.2315	2.3017	2.1770	2.1391	2.1803	2.0507	1.9960	2.0180	1.8008	1.7783	1.7308	0.00%	1.25/0	
	-0.01%	-0.03%	-0.01%	-0.01%	-0.01%	-0.03%	-0.03%	-0.01%	-0.03%	-0.02%	-0.02%	-0.01%	1.0100	1 9190	-0.05%	1.5290	-0.01%	-
	2.1194	2.2492		2.2911	2.2111		2.2250	2.1007		2.0972	2.0401		1.9100	1.0100		1.5309	1.2401	
	-0.02%	_0.02%		0.01%	0.01%		-0.05%	_0.03%		0.00%	-0.04%		-0.01%	-0.01%		-0.02%	-0.02%	
	2 0548	2 1185	2 2366	2 1492	2 1365	2 2052	2 0860	2 0502	2 0972	1 9670	1 9154	1 9390	1 7938	1 7101	1 6717	1 4516	1 2122	
	2.0040	2 1181	2 2374	2 1491	2 1366	2 2053	2.0000	2.0002	2 0975	1.9675	1.9158	1 9397	1 7939	1 7104	1.6716	1 4517	1 2124	
	-0.02%	0.02%	-0.04%	0.00%	0.00%	0.00%	0.01%	0.00%	-0.02%	-0.02%	-0.02%	-0.04%	-0.01%	-0.02%	0.00%	0.00%	-0.02%	
	1.9985	2.0610	2.1774	2.0977	2.0837	2.1471	2.0307	1.9955	2.0401	1.9154	1.8666	1.8908	1.7534	1.6744	1.6339	1.4187	1.1851	
	1.9984	2.0616	2.1782	2.0985	2.0839	2.1474	2.0310	1.9954	2.0417	1.9156	1.8669	1.8916	1.7538	1.6748	1.6342	1.4185	1.1856	
	0.01%	-0.03%	-0.04%	-0.04%	-0.01%	-0.01%	-0.01%	0.01%	-0.08%	-0.01%	-0.01%	-0.04%	-0.02%	-0.03%	-0.02%	0.02%	-0.04%	
	1.9483	2.0726		2.1444	2.1213		2.0559	2.0179		1.9390	1.8908		1.7904	1.7175		1.4378	1.1639	
	1.9488	2.0729		2.1450	2.1216		2.0564	2.0181		1.9397	1.8915		1.7916	1.7178		1.4384	1.1640	
	-0.03%	-0.01%		-0.03%	-0.02%		-0.03%	-0.01%		-0.04%	-0.03%		-0.06%	-0.02%		-0.04%	-0.01%	
	1.8550	1.9190	2.0604	2.0789	2.0008	2.0263	1.9033	1.8667	1.9100	1.7938	1.7534	1.7904	1.6920	1.6735	1.5637	1.3380	1.1169	
	1.8551	1.9190	2.0602	2.0794	2.0010	2.0266	1.9038	1.8672	1.9099	1.7944	1.7535	1.7907	1.6915	1.6728	1.5640	1.3389	1.1168	
	-0.01%	0.00%	0.01%	-0.02%	-0.01%	-0.02%	-0.03%	-0.03%	0.00%	-0.03%	-0.01%	-0.01%	0.03%	0.04%	-0.02%	-0.06%	0.00%	
	1.7530	1.7953	1.9302		1.9729	1.9394	1.8148	1.7784	1.8180	1.7101	1.6744	1.7175	1.6735		1.4768	1.2623	1.0679	
	1.7531	1.7958	1.9309		1.9727	1.9397	1.8149	1.7787	1.8180	1.7106	1.6742	1.7184	1.6739		1.4771	1.2624	1.0680	
	-0.01%	-0.03%	-0.04%		0.01%	-0.02%	-0.01%	-0.02%	0.00%	-0.03%	0.01%	-0.06%	-0.03%		-0.02%	-0.01%	-0.01%	
	1.6316	1.6534	1.7115	1.8129	1.8324		1.7682	1.7359		1.6717	1.6339		1.5637	1.4768	1.3186	1.1758	1.0134	
	1.6320	1.6537	1.7118	1.8133	1.8327		1.7689	1.7369		1.6723	1.6343		1.5646	1.4769	1.3187	1.1760	1.0135	
	-0.02%	-0.02%	-0.02%	-0.02%	-0.02%	4.0407	-0.04%	-0.05%	4 5000	-0.04%	-0.03%	4 4070	-0.06%	0.00%	0.00%	-0.01%	-0.01%	4
	1.4840	1.4924	1.5116	1.5397	1.5613	1.6127	1.5314	1.5068	1.5389	1.4516	1.4187	1.43/8	1.3380	1.2623	1.1/58	1.0807	0.9541	
	1.4841	1.4930	1.5115	1.5399	1.5614	1.6134	1.5320	1.5069	1.5393	1.4516	1.4186	1.4380	1.3384	1.2622	1.1756	1.0805	0.9542	
Mar	-0.01%	-0.04%	0.01%	-0.01%	-0.01%	-0.05%	-0.04%	-0.01%	-0.03%	0.00%	0.01%	-0.02%	-0.02%	0.01%	0.02%	0.02%	-0.01%	4
IVUZ	1.2011	1.2012	1.2052	1.2927	1.2971	1.3010	1.2701	1.2574	1.2401	1.2122	1.1851	1.1039	1.1109	1.0079	1.0134	0.9541	0.0702	
-	0.049/	0.020/	0.010/	0.010/	0.02%	0.02%	0.010/	0.02%	0.029/	1.2123	0.00%	0.029/	0.02%	0.05%	0.06%	0.9541	0.0703	
	-0.04%	-0.03%	-0.01%	-0.01%	-0.03%	-0.02%	-0.01%	0.02%	-0.02%	-0.01%	0.00%	-0.02%	0.02%	0.05%	0.00%	0.0070	-0.02%	J

96

MC)

Outer UO2集合体

	0.7948	0.7905	0.7722	0.7508	0.7261	0.7002	0.6596	0.6219	0.5881	0.5451	0.5059	0.4710	0.4297	0.3949	0.3743	0.3908	0.5022
	0.7948	0.7907	0.7726	0.7507	0.7261	0.7003	0.6598	0.6220	0.5883	0.5450	0.5055	0.4709	0.4295	0.3947	0.3741	0.3902	0.5016
	0.00%	-0.03%	-0.05%	0.02%	0.00%	0.00%	-0.03%	-0.02%	-0.03%	0.02%	0.07%	0.02%	0.07%	0.06%	0.05%	0.14%	0.12%
	0.7905	0.8271	0.8316	0.8260	0.8113	0.8083	0.7399	0.6974	0.6804	0.6131	0.5692	0.5475	0.4864	0.4428	0.4144	0.4250	0.5286
	0.7902	0.8269	0.8318	0.8261	0.8110	0.8078	0.7399	0.6975	0.6803	0.6128	0.5687	0.5472	0.4866	0.4427	0.4141	0.4247	0.5282
	0.04%	0.03%	-0.02%	-0.01%	0.03%	0.06%	-0.01%	-0.01%	0.02%	0.06%	0.09%	0.06%	-0.04%	0.02%	0.09%	0.07%	0.08%
	0.7722	0.8316	0.8646	0.8995	0.8867		0.8011	0.7536		0.6648	0.6170		0.5369	0.4896	0.4404	0.4391	0.5347
	0.7720	0.8313	0.8645	0.8996	0.8863		0.8012	0.7535		0.6646	0.6167		0.5368	0.4894	0.4401	0.4387	0.5343
	0.02%	0.04%	0.01%	-0.02%	0.04%		-0.01%	0.02%		0.04%	0.04%		0.03%	0.04%	0.07%	0.09%	0.07%
	0.7508	0.8260	0.8995		0.8916	0.8513	0.7683	0.7229	0.7094	0.6377	0.5942	0.5812	0.5404		0.4655	0.4444	0.5310
	0.7511	0.8258	0.8992		0.8916	0.8507	0.7678	0.7229	0.7095	0.6374	0.5941	0.5808	0.5402		0.4652	0.4439	0.5306
	-0.03%	0.02%	0.03%		0.01%	0.06%	0.07%	0.01%	-0.01%	0.03%	0.03%	0.06%	0.04%		0.07%	0.11%	0.07%
	0.7261	0.8113	0.8867	0.8916	0.8392	0.8243	0.7488	0.7062	0.6931	0.6240	0.5815	0.5664	0.5135	0.4932	0.4635	0.4423	0.5208
	0.7265	0.8112	0.8862	0.8913	0.8388	0.8240	0.7488	0.7061	0.6931	0.6237	0.5816	0.5660	0.5132	0.4929	0.4630	0.4421	0.5206
	-0.05%	0.01%	0.05%	0.03%	0.05%	0.03%	0.01%	0.02%	0.00%	0.04%	-0.02%	0.06%	0.06%	0.06%	0.11%	0.05%	0.04%
	0.7002	0.8083		0.8513	0.8243		0.7525	0.7104		0.6298	0.5856		0.5093	0.4734		0.4447	0.5070
	0.7004	0.8082		0.8512	0.8242		0.7530	0.7106		0.6301	0.5857		0.5089	0.4730		0.4446	0.5064
	-0.02%	0.02%		0.01%	0.01%		-0.06%	-0.03%		-0.05%	-0.02%		0.07%	0.08%		0.03%	0.13%
	0.6596	0.7399	0.8011	0.7683	0.7488	0.7525	0.6891	0.6527	0.6429	0.5788	0.5390	0.5230	0.4653	0.4316	0.4257	0.4120	0.4843
	0.6598	0.7396	0.8006	0.7683	0.7487	0.7527	0.6894	0.6527	0.6428	0.5786	0.5389	0.5229	0.4649	0.4316	0.4258	0.4117	0.4838
	-0.03%	0.03%	0.06%	0.00%	0.02%	-0.02%	-0.04%	0.00%	0.01%	0.03%	0.03%	0.02%	0.09%	0.00%	-0.02%	0.09%	0.12%
	0.6219	0.6974	0.7536	0.7229	0.7062	0.7104	0.6527	0.6192	0.6096	0.5499	0.5123	0.4961	0.4414	0.4091	0.4039	0.3921	0.4615
	0.6223	0.6974	0.7535	0.7232	0.7060	0.7103	0.6527	0.6189	0.6097	0.5497	0.5119	0.4957	0.4412	0.4091	0.4038	0.3919	0.4608
	-0.06%	0.00%	0.01%	-0.03%	0.03%	0.01%	0.01%	0.04%	-0.01%	0.03%	0.08%	0.08%	0.04%	0.00%	0.04%	0.04%	0.16%
	0.5881	0.6804		0.7094	0.6931		0.6429	0.6096		0.5429	0.5050		0.4360	0.4027		0.3848	0.4393
	0.5884	0.6802		0.7092	0.6931		0.6426	0.6094		0.5428	0.5050		0.4358	0.4022		0.3845	0.4389
	-0.04%	0.03%		0.03%	0.00%		0.04%	0.04%		0.01%	0.00%		0.04%	0.14%		0.09%	0.09%
	0.5451	0.6131	0.6648	0.6377	0.6240	0.6298	0.5788	0.5499	0.5429	0.4895	0.4564	0.4429	0.3937	0.3649	0.3610	0.3500	0.4115
	0.5452	0.6132	0.6648	0.6375	0.6236	0.6297	0.5785	0.5494	0.5425	0.4893	0.4563	0.4427	0.3938	0.3644	0.3609	0.3500	0.4109
	-0.02%	-0.01%	0.00%	0.03%	0.05%	0.00%	0.05%	0.09%	0.08%	0.03%	0.02%	0.03%	-0.03%	0.14%	0.05%	0.01%	0.14%
	0.5059	0.5692	0.6170	0.5942	0.5815	0.5856	0.5390	0.5123	0.5050	0.4564	0.4258	0.4130	0.3682	0.3418	0.3372	0.3270	0.3846
	0.5058	0.5693	0.6168	0.5941	0.5814	0.5856	0.5387	0.5119	0.5047	0.4561	0.4258	0.4129	0.3681	0.3416	0.3369	0.3264	0.3840
	0.01%	-0.03%	0.02%	0.03%	0.03%	-0.01%	0.05%	0.06%	0.07%	0.06%	0.02%	0.01%	0.03%	0.05%	0.07%	0.18%	0.14%
	0.4710	0.5475		0.5812	0.5664		0.5230	0.4961		0.4429	0.4130		0.3600	0.3347		0.3154	0.3588
	0.4710	0.5475		0.5809	0.5661		0.5227	0.4960		0.4427	0.4128		0.3597	0.3346		0.3149	0.3582
	-0.01%	-0.01%		0.05%	0.04%		0.05%	0.02%		0.04%	0.05%		0.08%	0.02%		0.15%	0.16%
	0.4297	0.4864	0.5369	0.5404	0.5135	0.5093	0.4653	0.4414	0.4360	0.3937	0.3682	0.3600	0.3262	0.3130	0.2959	0.2816	0.3289
	0.4296	0.4862	0.5368	0.5404	0.5132	0.5094	0.4649	0.4412	0.4354	0.3932	0.3676	0.3597	0.3258	0.3128	0.2959	0.2814	0.3284
	0.03%	0.04%	0.03%	0.01%	0.05%	-0.03%	0.07%	0.05%	0.12%	0.11%	0.16%	0.09%	0.15%	0.05%	0.01%	0.05%	0.14%
	0.3949	0.4428	0.4896		0.4932	0.4734	0.4316	0.4091	0.4027	0.3649	0.3418	0.3347	0.3130		0.2705	0.2560	0.3008
	0.3947	0.4424	0.4889		0.4928	0.4733	0.4311	0.4088	0.4023	0.3647	0.3415	0.3344	0.3128		0.2703	0.2558	0.3005
	0.05%	0.07%	0.13%		0.09%	0.02%	0.11%	0.06%	0.10%	0.06%	0.10%	0.08%	0.07%		0.07%	0.10%	0.09%
	0.3743	0.4144	0.4404	0.4655	0.4635		0.4257	0.4039		0.3610	0.3372		0.2959	0.2705	0.2418	0.2361	0.2773
	0.3740	0.4142	0.4402	0.4653	0.4631		0.4256	0.4039		0.3609	0.3369		0.2958	0.2702	0.2416	0.2355	0.2769
	0.06%	0.05%	0.05%	0.04%	0.09%		0.04%	0.02%		0.04%	0.08%		0.03%	0.10%	0.09%	0.25%	0.15%
	0.3908	0.4250	0.4391	0.4444	0.4423	0.4447	0.4120	0.3921	0.3848	0.3500	0.3270	0.3154	0.2816	0.2560	0.2361	0.2320	0.2663
	0.3906	0.4244	0.4390	0.4440	0.4420	0.4445	0.4118	0.3917	0.3844	0.3501	0.3267	0.3151	0.2813	0.2555	0.2357	0.2315	0.2660
	0.05%	0.15%	0.02%	0.09%	0.09%	0.05%	0.06%	0.09%	0.11%	-0.02%	0.11%	0.08%	0.11%	0.18%	0.19%	0.23%	0.13%
Nad	0.5022	0.5286	0.5347	0.5310	0.5208	0.5070	0.4843	0.4615	0.4393	0.4115	0.3846	0.3588	0.3289	0.3008	0.2773	0.2663	0.2871
ing	0.5019	0.5283	0.5347	0.5307	0.5206	0.5064	0.4840	0.4612	0.4392	0.4110	0.3844	0.3583	0.3282	0.3002	0.2769	0.2659	0.2869
	U.U070	0.00%	0.0070	0.0070	0.0370	U.1270	0.0070	0.0770	0.0470	U.1170	0.0370	U.1270	U.ZZ70	U.Z170	U.1/70	0.1370	0.00%

-AEGIS (MOC) -GMVP (Multi-group MC) -Difference

Reactor Physics, N

MOX集合体

	1.3127	1.2958	1.2896	1.2918	1.2946	1.2961	1.2736	1.2553	1.2428	1.2116	1.1856	1.1642	1.1214	1.0776	1.0355	1.0061	1.0129	-/
	1.3129	1.2958	1.2895	1.2918	1.2950	1.2963	1.2733	1.2550	1.2426	1.2113	1.1854	1.1641	1.1213	1.0778	1.0355	1.0062	1.0121	-(
	-0.02%	0.00%	0.01%	0.00%	-0.03%	-0.02%	0.02%	0.02%	0.02%	0.03%	0.02%	0.01%	0.00%	-0.02%	0.00%	-0.01%	0.08%	_
	1.0625	1.3428	1.3205	1.3325	1.3589	1.4243	1.3325	1.3114	1.3614	1.2684	1.2432	1.2856	1.1870	1.1254	1.0832	1.0909	0.9093	Ι'
	1.0626	1.3431	1.3207	1.3326	1.3584	1.4245	1.3323	1.3119	1.3617	1.2680	1.2436	1.2855	1.1866	1.1252	1.0825	1.0902	0.9093	
	-0.01%	-0.02%	-0.01%	-0.01%	0.03%	-0.02%	0.01%	-0.03%	-0.02%	0.03%	-0.03%	0.01%	0.03%	0.02%	0.06%	0.06%	0.00%	
	0.9372	1.1711	1.1778	1.2628	1.2890		1.2234	1.1994		1.1636	1.1422		1.1351	1.0795	0.9854	0.9852	0.8549	
	0.9372	1.1712	1.1778	1.2636	1.2890		1.2232	1.1996		1.1639	1.1424		1.1351	1.0796	0.9854	0.9850	0.8543	
	0.00%	-0.01%	0.00%	-0.06%	0.00%		0.01%	-0.02%		-0.02%	-0.02%		0.00%	-0.01%	0.00%	0.02%	0.07%	
	0.8649	1.0938	1.1752		1.1817	1.2799	1.1471	1.1235	1.1896	1.0897	1.0747	1.1624	1.0418		0.9975	0.9413	0.8187	
	0.8650	1.0937	1.1759		1.1814	1.2800	1.1469	1.1240	1.1901	1.0898	1.0744	1.1624	1.0415		0.9974	0.9409	0.8182	
	0.00%	0.00%	-0.05%		0.03%	-0.01%	0.01%	-0.04%	-0.04%	-0.01%	0.03%	0.00%	0.03%		0.01%	0.04%	0.06%	
	0.8130	1.0484	1.1193	1.1125	1.1442	1.1428	1.0382	1.0185	1.0736	0.9890	0.9756	1.0428	1.0148	0.9630	0.9584	0.9158	0.7869	
	0.8131	1.0488	1.1196	1.1128	1.1441	1.1432	1.0381	1.0190	1.0745	0.9887	0.9752	1.0431	1.0141	0.9632	0.9584	0.9160	0.7866	
	-0.01%	-0.03%	-0.03%	-0.03%	0.01%	-0.04%	0.01%	-0.04%	-0.08%	0.03%	0.04%	-0.03%	0.07%	-0.03%	0.00%	-0.02%	0.04%	
	0.7691	1.0451		1.1281	1.0838		1.0371	1.0179		0.9912	0.9754		0.9687	0.9820		0.9221	0.7560	
	0.7694	1.0451		1.1281	1.0836		1.0369	1.0182		0.9908	0.9751		0.9689	0.9819		0.9216	0.7561	
	-0.04%	0.00%		0.00%	0.02%		0.02%	-0.03%		0.04%	0.02%		-0.02%	0.00%		0.06%	-0.02%	
	0.7136	0.9191	0.9505	0.9578	0.9288	0.9849	0.9003	0.8869	0.9438	0.8633	0.8500	0.9054	0.8331	0.8390	0.8249	0.8195	0.7105	
	0.7137	0.9190	0.9506	0.9578	0.9288	0.9848	0.9003	0.8868	0.9440	0.8632	0.8501	0.9056	0.8331	0.8389	0.8251	0.8194	0.7106	
	-0.01%	0.02%	-0.01%	0.00%	0.00%	0.01%	0.01%	0.02%	-0.02%	0.01%	-0.01%	-0.01%	-0.01%	0.02%	-0.02%	0.01%	-0.01%	
	0.6641	0.8509	0.8704	0.8808	0.8555	0.9022	0.8330	0.8220	0.8686	0.8008	0.7885	0.8327	0.7709	0.7763	0.7615	0.7656	0.6684	
	0.6641	0.8505	0.8703	0.8807	0.8554	0.9021	0.8330	0.8220	0.8686	0.8007	0.7885	0.8326	0.7708	0.7762	0.7615	0.7657	0.6682	
	0.00%	0.05%	0.01%	0.02%	0.01%	0.01%	0.00%	0.01%	0.00%	0.02%	0.01%	0.01%	0.01%	0.02%	0.00%	-0.01%	0.03%	
	0.6213	0.8395		0.8767	0.8534		0.8336	0.8221		0.8028	0.7895		0.7732	0.7763		0.7600	0.6310	
	0.6215	0.8393		0.8767	0.8536		0.8341	0.8223		0.8024	0.7897		0.7730	0.7767		0.7600	0.6311	
	-0.03%	0.03%	0.7504	0.00%	-0.02%	0 7057	-0.06%	-0.03%	0.7505	0.05%	-0.03%	0.7000	0.02%	-0.05%	0.0000	0.00%	-0.01%	
	0.5700	0.7335	0.7501	0.7597	0.7383	0.7857	0.7203	0.7113	0.7585	0.6943	0.6842	0.7290	0.6703	0.6759	0.6687	0.6602	0.5844	
	0.5703	0.7332	0.7504	0.7596	0.7304	0.7654	0.7202	0.7110	0.7565	0.0941	0.0043	0.7207	0.0700	0.0750	0.0007	0.0093	0.5659	
	0.00%	0.04 /0	-0.04 %	-0.02 %	-0.01%	0.04 /0	0.6600	-0.04 /0	0.6880	0.04%	-0.01%	0.6646	0.03%	0.01%	0.02 /0	0.02 /0	0.00%	ł
	0.5243	0.6726	0.0030	0.0300	0.6781	0.7144	0.6500	0.6518	0.6800	0.6364	0.6281	0.6648	0.6176	0.6246	0.6132	0.6177	0.5417	
	0.0247	0.0720	-0.0033	0.0303	0.0701	0.04%	0.0000	-0.01%	0.0030	0.0304	0.0201	-0.02%	0.0170	-0.0240	0.0132	0.06%	0.0410	
	0.4848	0.6576	0.0470	0.7032	0.6780	0.0470	0.6540	0.6442	0.0070	0.6305	0.6224	0.0270	0.6201	0.6309	0.0070	0.6063	0.5035	1
	0 4847	0.6572		0 7031	0.6783		0.6546	0.6445		0.6302	0.6222		0.6199	0.6310		0.6059	0.5033	
	0.02%	0.06%		0.01%	-0.04%		-0.09%	-0.04%		0.04%	0.04%		0.02%	-0.02%		0.08%	0.05%	
	0.4386	0.5674	0.6073	0.5891	0.6107	0.6207	0.5615	0.5528	0.5898	0.5407	0.5356	0.5793	0.5588	0.5305	0.5450	0.5266	0.4588	1
	0.4386	0.5671	0.6070	0.5890	0.6111	0.6209	0.5616	0.5528	0.5896	0.5407	0.5354	0.5796	0.5587	0.5306	0.5452	0.5261	0.4588	
	-0.01%	0.06%	0.05%	0.01%	-0.07%	-0.04%	-0.02%	0.00%	0.05%	-0.01%	0.03%	-0.06%	0.02%	-0.03%	-0.04%	0.10%	0.00%	
	0.3989	0.5045	0.5426		0.5384	0.5775	0.5219	0.5129	0.5412	0.5018	0.4985	0.5398	0.4932		0.4891	0.4707	0.4200	
	0.3992	0.5040	0.5426		0.5384	0.5772	0.5218	0.5126	0.5408	0.5011	0.4984	0.5399	0.4931		0.4889	0.4709	0.4198	
	-0.08%	0.11%	0.00%		0.00%	0.05%	0.02%	0.07%	0.07%	0.14%	0.01%	-0.03%	0.02%		0.03%	-0.05%	0.05%	
	0.3778	0.4704	0.4753	0.5137	0.5183		0.4886	0.4806		0.4709	0.4667		0.4769	0.4651	0.4292	0.4394	0.3975	
	0.3777	0.4702	0.4750	0.5134	0.5180		0.4885	0.4808		0.4709	0.4667		0.4765	0.4651	0.4292	0.4394	0.3973	
	0.02%	0.04%	0.07%	0.06%	0.06%		0.02%	-0.03%		0.01%	0.01%		0.07%	0.02%	0.00%	0.01%	0.05%	
	0.4101	0.5165	0.5079	0.5133	0.5237	0.5500	0.5146	0.5085	0.5318	0.4980	0.4926	0.5159	0.4823	0.4653	0.4579	0.4779	0.4208	
	0.4095	0.5163	0.5075	0.5130	0.5230	0.5495	0.5147	0.5085	0.5315	0.4981	0.4925	0.5156	0.4823	0.4654	0.4577	0.4775	0.4205	L
λτ.	0.16%	0.05%	0.09%	0.07%	0.13%	0.10%	-0.03%	0.00%	0.05%	-0.03%	0.02%	0.07%	0.00%	-0.01%	0.05%	0.10%	0.09%	L
IVG	0.6001	0.5923	0.5885	0.5878	0.5881	0.5880	0.5811	0.5758	0.5724	0.5638	0.5570	0.5521	0.5416	0.5323	0.5276	0.5358	0.5762	L
	0.5992	0.5919	0.5884	0.5876	0.5874	0.5877	0.5811	0.5756	0.5724	0.5636	0.5566	0.5517	0.5414	0.5320	0.5272	0.5353	0.5758	L
	0.16%	0.08%	0.01%	0.04%	0.11%	0.05%	0.01%	0.05%	0.01%	0.02%	0.06%	0.08%	0.04%	0.06%	0.08%	0.09%	0.07%	

AEGIS (MOC) GMVP (Multi-group MC) Difference

Reactor Physics,

炉心体系への適用

- CMFDやGCMR加速計算の利用により、商業炉の全炉心解析が現実的な計算時間で実施可能に
- MOCを炉心解析に用いる動機
 - 既存の炉心解析手法の精度の確認
 - 設計余裕の適正化のための高精度解析

モンテカルロコードとの比較 (4 loop PWR)

モンテカルロコードとの比較 (4 loop PWR)

■ 計算条件

- レイトレース幅: 0.02cm以下、Gauss-Legendreマクロバンド法
- 方位角分割: 128 (for 2Pi)
- 極角分割: 3 (for Pi/2、TY-opt角度分点)
- メッシュ分割:物質境界に加え、燃料・反射体セル (1.26cmx1.26cm)を20x20メッシュに分割
- モンテカルロのヒストリー数:1億
- 結果の概要
 - 実効増倍率の差異:0.001%
 - 燃料棒毎核分裂率分布の平均自乗誤差:0.78%
 - 燃料棒毎核分裂率分布の最大誤差:5.2%

モンテカルロコードとの比較 (4 loop PWR)

燃料棒毎の核分裂率分布の差異

Reactor Phys

炉心解析の結果

■ 初装荷炉心解析結果

	Н	G	F	E	D	С	В	А						
8	0.0	0.2	0.0	0.0	1.2	1.3	0.1	-1.4						
7	0.3	0.3	0.5	0.0	1.2	-1.6								
6	0.2	0.6	1.6	1.2	0.1									
5	1.0	0.7	1.4	0.9	0.8									
4	0.9	1.1	1.0	1.3	0.9									
3	0.5	-0.5	-1.3	-0.9	1.0		-							
2	-0.4	-1.5	-0.5	-0.5 -0.9 (CHAPLET-Meas.)/Meas.(%										
1	1 -2.0 -2.3 R.M.S. error of assembly power 0.97% Maximum error of assembly power -2.3% Error of k-effective -0.15%dk/k													

Analysis of the Ikata-3 Initial Core with the CHAPLET Heterogeneous Transport Calculation Code Based on the Method of Characteristics, M. Tatsumi, T.Kimoto, A. Yamamoto, Trans. Am. Nucl. Soc., 83巻(頁: 286-287), 2000年

- MOCの概要
- レイトレースと境界条件の取り扱い
- 角度分割
- 幾何形状
- 加速計算

■ 適用例